
PyROL Documentation
Release 0.1.1

Chris Richardson and Florian Wechsung

Feb 18, 2019

Contents

1 Introduction 3

2 Installation 5

3 API 7

4 Vectors 9

5 Objectives 11

6 Constraints 13

7 Indices and tables 15

i

ii

PyROL Documentation, Release 0.1.1

Contents:

Contents 1

PyROL Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Introduction

ROL (Rapid Optimization Library) is an optimization library written in C++ and is part of Trilinos. PyROL is a
Python wrapper for ROL using the <https://github.com/pybind/pybind11> library. It allows you to create objectives,
constraints and vectors all in python. For the vectors you can use your own underlying data storage.

This enables the use of ROL for large scale PDE Constrained Optimization with FEniCS or Firedrake. Have a look
at the examples to see how to to solve the motherproblem of PDE Constrained Optimization with either of the two
libraries.

3

https://github.com/pybind/pybind11

PyROL Documentation, Release 0.1.1

4 Chapter 1. Introduction

CHAPTER 2

Installation

We assume that you have Trilinos 12.10 or later installed on your machine.

git clone https://bitbucket.org/pyrol/pyrol/
cd src
git clone https://github.com/pybind/pybind11

We use cmake for the configuration. Sometime there are issues with finding the correct python version. On macOS,
try running

cmake -DPYTHON_LIBRARY=$(python-config --prefix)/lib/libpython2.7.dylib \-DPYTHON_
→˓INCLUDE_DIR=$(python-config --prefix)/include/python2.7 -DTRILINOS_DIR="/path/to/
→˓Trilinos/" ..

on Ubuntu run

cmake -DTRILINOS_DIR="/path/to/Trilinos/" -DPYTHON_EXECUTABLE:FILEPATH=/usr/bin/
→˓python2.7 -DPYTHON_INCLUDE_DIR:PATH=/usr/include/python2.7 -DPYTHON_
→˓LIBRARY:FILEPATH=/usr/lib/x86_64-linux-gnu/libpython2.7.so ..

5

PyROL Documentation, Release 0.1.1

6 Chapter 2. Installation

CHAPTER 3

API

7

PyROL Documentation, Release 0.1.1

8 Chapter 3. API

CHAPTER 4

Vectors

To write your own vector class, simply inherit from ROL.CustomLA.

PyROL provides a ROL.StdVector class, which is based on the ROL::StdVector class. Using it is as simple as

import ROL
x = ROL.StdVector(2)
x[0] = 1.0
x[1] = 2.0
print x.norm()

However, you are likely to want to implement your own vector class, for example based on the data storage of a finite
element library. This class is then able to implement a custom inner product, for example an 𝐿2 inner product.

TODO: document one of the CustomLA classes and somehow include them here.

9

PyROL Documentation, Release 0.1.1

10 Chapter 4. Vectors

CHAPTER 5

Objectives

To write your own objective class, simply inherit from ROL.Objective.

Let’s say we want to minimize the function 𝑓(𝑥, 𝑦) = (𝑥− 1)2 + 𝑦2.

class MyObj(ROL.Objective):
def __init__(self):

ROL.Objective.__init__(self)

def value(self, x, tol):
return (x[0] - 1)**2 + x[1]**2

def gradient(self, g, x, tol):
g[0] = 2 * (x[0] - 1)
g[1] = 2 * x[1]

If we omit the definition of the gradient function, then ROL will use a finite difference approximation instead.

11

PyROL Documentation, Release 0.1.1

12 Chapter 5. Objectives

CHAPTER 6

Constraints

ROL supports three different types of constraints.

6.1 Bound Constraints

Creating a bound constraint is a simple as

x_lo = ROL.StdVector(2)
x_lo[0] = -1.0
x_lo[1] = -1.0
x_up = ROL.StdVector(2)
x_up[0] = +1.0
x_up[1] = +1.0
scale = 1.0
bnd = ROL.BoundConstraint(x_lo,x_up, scale)

Note that in order to use this with your own vector class, the class needs to implement the __getitem__ method.

6.2 Equality Constraints

In order to write your own equality constraint, inherit from the class ROL.EqualityConstraint

6.3 Inequality Constraints

Not yet implemented in PyROL.

13

PyROL Documentation, Release 0.1.1

14 Chapter 6. Constraints

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

15

	Introduction
	Installation
	API
	Vectors
	Objectives
	Constraints
	Indices and tables

